首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6709篇
  免费   1113篇
  国内免费   743篇
化学   4630篇
晶体学   75篇
力学   389篇
综合类   55篇
数学   820篇
物理学   2596篇
  2024年   12篇
  2023年   131篇
  2022年   140篇
  2021年   204篇
  2020年   244篇
  2019年   267篇
  2018年   215篇
  2017年   205篇
  2016年   306篇
  2015年   324篇
  2014年   365篇
  2013年   443篇
  2012年   604篇
  2011年   658篇
  2010年   414篇
  2009年   366篇
  2008年   434篇
  2007年   400篇
  2006年   391篇
  2005年   305篇
  2004年   244篇
  2003年   207篇
  2002年   148篇
  2001年   152篇
  2000年   151篇
  1999年   170篇
  1998年   142篇
  1997年   123篇
  1996年   118篇
  1995年   116篇
  1994年   109篇
  1993年   72篇
  1992年   75篇
  1991年   85篇
  1990年   53篇
  1989年   34篇
  1988年   32篇
  1987年   29篇
  1986年   19篇
  1985年   19篇
  1984年   9篇
  1983年   19篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1971年   1篇
排序方式: 共有8565条查询结果,搜索用时 78 毫秒
31.
This contribution investigates thermal decomposition of leucine, as a representative model compound for amino acids in algal biomass. We map out potential energy surface for a wide array of unimolecular and self-condensation reactions operating in the decomposition of leucine. Decarboxylation and dehydration of leucine ensues by eliminating CO2 and –OH, respectively, from the –COOH group attached to the α-carbon. The molecular channel for deamination involves cleavage of NH2 from α-carbon of leucine. The activation energies for direct elimination of CO2, NH3, and H2O from a leucine molecule lie within 20.7 kJ/mol of each other. Activation energies for these decomposition pathways reside below the bond dissociation enthalpy of H–C(α) of 323.1 kJ/mol. The decarboxylation, deamination, and dehydration pathways, via radical-prompted pathways, systematically require lower energy barriers, in reference to closed-shell reaction corridors. Detailed computations at the CBS-QB3 level provide the Arrhenius rate parameters for the unimolecular and bimolecular reactions, and standard enthalpies of formation, standard entropies, and heat capacities for all the products and intermediates. A kinetic analysis of gas-phase reactions, within the context of a plug-flow reactor model, accounts qualitatively for the formation of major products observed experimentally in the thermal degradation of the condensed-phase leucine. Among notable N-containing species, the model predicts the prevailing of NH3 over HCN and HNCO, in addition to corresponding appreciable concentrations of amines, imines, and nitriles. Our detailed kinetic investigation illustrates a negligible contribution of the self-condensation reactions of leucine in the gas phase.  相似文献   
32.
Cross‐relaxation among sensitizers is commonly regarded as deleterious in fluorescent materials, although favorable in photothermal agents. Herein, we coated Prussian blue (PB) on NaNdF4 nanoparticles to fabricate core–shell nanocomplexes with new cross relaxation pathways between the ladder‐like energy levels of Nd3+ ions and continuous energy band of PB. The photothermal conversion efficiency was improved exceptionally and the mechanism of the enhanced photothermal effect was investigated. In vivo photoacoustic imaging and photothermal therapy demonstrated the potential of the enhanced photothermal agents. Moreover, the concept of generating new cross‐relaxation pathways between different materials is proposed to contribute to the design of all kinds of enhanced photothermal agents.  相似文献   
33.
Two new complexes, namely [Cu6L6] ( 1 ) and [Zn(HL)2] ( 2 ) (H2L = N‐(1‐phenyl‐3‐methyl‐4‐propenylidene‐5‐pyrazolone)‐2‐furancarboxylic acid hydrazide), have been synthesized and characterized. Single crystal X‐ray analysis indicates that complex 1 has a hexanuclear structure and complex 2 exhibits a mononuclear structure. The DNA/bovine serum albumin (BSA) binding properties of complexes 1 and 2 were investigated by absorption spectroscopy and fluorescence quenching. Both complexes could effectively intercalate to DNA with calculated quenching constants of 2.6 × 105 and 1.25 × 105 M?1, respectively. The quenching mechanism of the intrinsic fluorescence of BSA by the complexes was found to be a static one. The cytotoxicities of 1 and 2 were investigated in two human tumor cell lines, human esophageal cancer cells (Eca‐109) and cervical cancer cells (HeLa). Complex 1 exhibits higher antitumor activity than 2 . Furthermore, 1 can inhibit HeLa cells by inducing apoptosis and G0/G1 phase cell cycle arrest. All results demonstrate that 1 and 2 both have DNA/BSA binding capacity and antitumor activity.  相似文献   
34.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   
35.
The trench on a printed circuit board was reconstructed to fabricate a microfluidic framework that allows low-cost production for small quantities and integration with multifunctional elements. An on-chip electrolyte regulator was thus proposed on this platform to analyze diffusion properties in laminar flow. A numerical model was developed, highlighting the interplay between the electrolyte migration and hydrodynamic properties. Solutions with dissolved sodium chloride were simulated and experimentally tested for the regulation of electrical conductivity under the guidance of the normalized Nernst-Planck equation. The diffusion mechanism and the resulting concentration field were demonstrated in detail. This approach provides a satisfactory manufacturing method and a useful tool for integrated microfluidic systems.  相似文献   
36.
Wedge-shaped molecules, such as dendrons, are among the most important building blocks for directed supramolecular self-assembly. Here we present a new approach aimed at widening the range and complexity of potential mesophases by introducing double-tapered mesogens. Two series of compounds are presented, both alkali metal salts (Li, Na, Cs) of 3,4,5-tris-alkoxybenzoic acid with a second tapered tris-alkoxyaryl group attached at the end of an alkoxy chain. The double-tapered compounds all display an unusual hexagonal columnar phase consisting of one ionic and three non-ionic columns per unit cell. The cation size has an unexpectedly drastic effect on unit cell size. Unlike most columnar phases, the current phases show unusually high dimensional stability on heating, and high stiffness in spite of being 80–85 % aliphatic, attributed to their molecular topology. The described approach may lead to co-assemblies of multifunctional materials, for example, parallel p- and n-semiconducting nanowires or parallel ionic and electronic conductors.  相似文献   
37.
An in situ generated oxidation species of nickel quinolinylpropioamide intermediate was produced. Characterization by X-ray absorption near edge structure (XANES) and EPR provides complementary insights into this oxidized nickel species. With aliphatic amides and isocyanides as substrates, a nickel-catalyzed facile synthesis of structurally diverse five-membered lactams could be achieved.  相似文献   
38.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及Ce掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂Ce元素,带隙宽度下降为0.812 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后Ce原子的4f轨道主要贡献在导带部分,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,第一个介电峰是由于导带电子跃迁到Ce原子4f轨道上产生,第二个峰是价带电子向导带电子跃迁产生.未掺杂6H-SiC,在能量为10.31 eV处吸收系数达到最大值,掺杂后在能量为6.57 eV处,吸收系数达到最大值.  相似文献   
39.
40.
Attaching AIE-active L1 ([1,1′:2′,1′′:4′′,1′′′-quaterphenyl]-2-yldiphenylphosphane) to AuCl, shortened the distances of P−C bonds to promote electron cloud overlap between AuI and L1 , affords 1 ( L1 AuCl) with aggregation-induced phosphorescence enhancement (AIPE) activity by 3LMCT transitions. Then substituting the coplanar L2 (9-ethynylanthracene) for the Cl in 1 providing 2 , switches the luminescence to aggregation-caused quenching (ACQ) activity. Furthermore, we restore the performance from ACQ to AIPE by metathesis reactions to transfer 2 into 1 . It is versatile synthetic strategy of reversible transformation between 1 and 2 that switches the luminescence of organogold(I) between AIPE and ACQ through balancing auxiliary ligands around the given metal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号